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Measurements Using Microwave Cavity Perturbation

Tectilques
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Abstract —Tbfs paper examines the edge effects of introducing a dielec-

tric test cylinder with a test material into a cavity via a metallic support

tube extending ontside the cavity. A first-order perturbation theory is used

for this metallic hole containing two different concentric dielectric materi-

als. Tbe Galerkin method is used to determine the amplitudes of numerous

evanescent modes which exist in such composite hole geometries. Compari-

sons are made with the effects produced by a simple hole in which a single

dielectric is @nlated inside the metallic support tribe. The effects of the

composite hole on the measurement of the dielectric properties of materials

are given.

I. INTRODUCTION

In the field of dielectric measurements by means of the well-

known cavity perturbation method, the effects of the sample

insertion hole are probably the major source of measurement

error. Estin and Bussey had published in 1960 a paper to discuss

the problem of a simple hole in both theoretical and experimental

ways [1]. In recent years, by means of the same procedure— sim-

ple perturbation theo~—the effects of a simple hole on measure-

ment of c’ for both TMOIO and TMO1, cavities were given by

Meyer [2]. In the above two references only the main cylindrical

TMO1 mode in the hole region was taken into account. Further-

more, even for this single mode treatment the amplitude was

chosen rather arbitrarily. In addition, Thomassen [3] also pro-

posed another revised dispersion equation to describe this effect

based on an approximate calculation of end capacitance of a

simple plasma column. These results were checked by Gregory [4]

via a series of measurements for some well-known materials in

different TMOIO cavities. From these results one can find that

Thomassen’s equations give a correction factor which is too big.

In this paper, the hole formed by an externaf metallic support

tube, joined to the cavity, is considered to contain a dielectric test

cylinder for i~troducing a sample material with varying dielectric

properties as shown in Fig. 1. A large number of higher order

modes are considered in this composite hole condition as com-

pared to the single mode treatment of the simple hole [1], [2]

containing only one dielectric, The results show that higher order

modes in the composite hole converge rather slowly and will

obviously contribute to the frequency perturbation. In addition,

it is shown that the composite hole perturbs the cavity Q factor

and a correction term for dielectric losses is also derived with the

same theory. All these effects lead to the fact that measured .s’

and e” are always found to be respectively smaller and higher

than the value measured with no hole of the sample material. By
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F1g 1. Configuration of TMOPq cavity with a concentric dielectric sample

and its composite insertion hole conditions.

the use of the correction terms developed for the composite hole

condition, the calculated error of the dielectric constant measure-

ment is greatly reduced and much more accurate results can be

obtained [5].

II. THE FIELD DISTRIBUTION IN THE COMPOSITE HOLE

REGION

As shown in Fig. 1, we assume the lengths of dielectric sample,

dielectric tube (to introduce the sample), and the metallic support

tube (made with an ideal conductor) are infinite. This assumption

is always satisfied when the tube’s inner diameter is much smaller

than the resonant wavelength in the dielectric, or when the

following equation is satisfied:

where

P
b

c’

p2b2c’<1 (1)

the radial index of the TMOP~ mode;

the tube’s inner radius normalized by the radius of the

cavity; and

the real part of the largest of the two dielectric constants:

test tube and sample material.

Under this assumption and considering the symmetry of config-

uration, only cylindrical TIvfo~ modes can exist in the sample

insertion tube; all these modes ewnesce rapidly. The fields in the

sample are given by (O< r < a)

Ezl = ~ rnAnJo(krMr)e-kfl” (2.1)

(2.2)
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and

‘+1 ‘~aco~l~ j flnJl(krnr)e-kn” (2.3)
~=1

where k~n — k;= c ~kj, k. is the free-space wavenumber.

Because the attenuation constant kn is always much larger than

c, k;, we can approximately take

krn=kn=;

with an error less than 1 percent when (1) is satisfied. By the. .
same way, the fields in the ‘dielectric tube are (a < r <b)

‘z, = z TnBnZo(knr)e-~n”
~=1

Er,= z ~nBnZ1(knr)e-kn’r

where

Zm(knr)= Jm(knr)Yo(knb)– Ym(knr)Jo(knb)

(3.1)

(3.2)

(3.3)

and

(~,=z—h, for upper hole

—z, for bottom hole

According to the boundary condition at r = a, we can obtain the

following relationship:

B = .TO(kna) ~

n Zo(kna) n

and

clJ, (kna)Zo(kna) –e2Jo(kna) Z1(kna)=0. (4)

From the characteristic equation (4), the mode series in the small

sample test tube can be obtained. Fro the case c ~= cz, we have

kn = xon/b (5)

where xo~ is the n th root of Jo( x) = O. This is the solution for the

simplest configuration [1], [2].

Another problem is to find the amplitude spectrum A. inside

the tube. Because of the test tube perturbation, the RF field’s

distribution in the vicinity of interface z’= O is destroyed and an

E, component appears. As an approximation, we assume that the

H+ component distribution in the cavity isn’t perturbed by the

hole. This leads

H $ tube = H+ .npe,tu,bed~av,ty (6)

at z’=Oandr<b.

Substituting (2) and (3) into the above equation, and taking (1)

into account, one can obtain

~ AnJ,(~nr/b)=&, ()<r<~ (7.1)
~=1

and

a<r<b (7.2)

where r. = kn b, and the small arguments of Bessel function have

been used as an approximation.

TABLE I
AMPLITUDESAn OFTHEFIRST 20 MODES(TMO, THROUGHTM020)

FORCOMPOSITEHOLE ((2 =4.75, a/b ‘0.7)

1 0.785

2 –0.461

3 0.185

4 –0.056

5 0.062

6 –0.068

7 0.062

8 –0.087

9 0.058

10 0.004

II –0.015
12 –0.013

13 0.043

14 –0.055
15 0.046

16 –0.002
17 –0.029
18 0.018
19 0.022
20 – 0.050

f=3

0.691

–0.272

0.126

–0.065

0.049
–0.040

0.034
–0.036

0.029

–0.016

0.010

–0.013

0.016

–0.019
0.018

–0.011

0.004
–0.005

0.010
–0.014

~ =4,75

0.666

–0.193

0.098

–0.062

0.043

–0.033

0.026

–0.021

0.017

–0.015

0.013

–0.011

0.010

–0.009
0.008

– 0.007
0.007

–0.006
0.006

–0.005

~=9

0.670

–0.105
0.066

–0.056
0.038

–0.029
0.019

–0.008
0.007

–0.013

0.016
–0.013

0,009
–0.004

0.001
–0.005

0.010
–0.010

0.007

–0.003

0.816 1.211

–0.015 0.022
0.025 0.002

– 0.041 – 0.027
0.031 0.027

– 0.024 – 0.022
0.009 0.003
0.008 0.015

–0.007 –0.013

–0.007 0.003

0.017 0.016

–0.014 –0,014
0.008 0.009

0.001 0.003

–0.007 –0.olo
0.002 0.007
0.007 0.003

–0.010 –0.010
0.007 0.008

–0.001 –0.001

It is obvious that the distribution of mode amplitudes in the

metallic support tube does not depend on the resonant mode in

the cavity and the radius of the tube b when (1) is satisfied and

the first-order perturbation theory is used. To solve the above

boundary problem, the Galerkin method [6] is useful. By taking

N modes in the tube to match this tangential magnetic field at N

uniformly distributed points, (7) then becomes a Iinew equation

of order N. As an example, some typicaf solutions of A. are listed

in Table I, when a pyrex sampling tube (c~ =4.75) is used to

introduce a dielectric sample and N equals 40. When N >20, the

amplitudes of the lower order modes, which are mainly contribut-

ing to storage and loss of RF energy, are effected only a little.

From the results listed in Table I, one cars find that the higher the

t, value, the faster the higher modes converge in the composed

test tube case, and stronger effects on the c’ measurement will

appear. When c, = c~, in the case of a single dielectric cylinder,

the distribution of A,2 will not depend on c, and this conclusion

can be obtained from (5) directly.

III. THE EFFECTS ON PRECISE MEASUREMENT OF C*

According to the adiabatic invariance theorem, the resonant

frequency pulling due to a perturbation by the sample insertion

tube will be equal to the variation of stored energy in the cavity.

By use of the same procedure suggested by Estin and Bussey [1],

and taking the results listed in Table I, this relative resonant

frequency ~ulling for a TMoP~ cavity resonance is given

()

13f a2bx~p K

z ,q= 2A, WYxop)(x&,+q 2m2/h’)

where

K= ~ rnA~J~(r.a/b)
~=1

by

(8)

“{c2b2Z:(q)

[

+(c, –q) l–
c1J~(7na/b) 1}(9)

a2Z~(rna/b) c2J~(Tna/b)
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and

(1, forq=O

‘q= 1/2, forq#O.
(lo)

1.

c

On the other hand, the existence of RF fields in the metallic

support tube will produce an additional loss for 10SSY dielectric

samples. It is found that

1.(

where all arguments of Bessel function JO and JI are r. a/ b, amd o.!
l/Q, is the loss of sample in the c?vity. It is obvious that the

measured variation in losses in cavity 8(1 /QL) will not be equal

to 1/Q, (the dielectric loss of the sample).

In addition to the effects of cavity wrdl and external circuits

(via coupling elements) already given [5], the sample loss (l/Q,)

can be related to the loaded Q factor of cavity (QL) perturbed by

tube only as follows:
o

By use of the simple perturbation theory, it is easily shown that

0.5

(12)
alb 1.0

Fig. 2. The correction coefficient C versus a/b at different vatues of c; for

where

86” bD

E
,, Aqh

~= K(C,)– K(l)

q-l

1

1.5

(13)
D

(14)

1.0

(15)

K(c1) and K(l) are the values of K when CI=cl and 6,=1,

respectively.

It must be noted that only the effects of one composite hole

(upper or lower hole) is taken into account in the above calcula-

tion. The total effect in actual practice will be double the values 0.5

indicated by (13) and (14).

IV. RESULTS AND DISCUSSION

Numerical results of coefficients C and D in (13) and (14) are

shown in Fig. 2 and Fig. 3, respectively. A discussion for the

present theory can be made as follows.

1) The correction coefficient C (Fig. 2) will converge to one

point C =0.323 for any value of c{ when a/b= 1. This is also the
o

n

C2=4.75.

r“.
,,
;’

;,
,,
,,
,, ~1=1

/’
i
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,-. ‘. ..-’ \

/’ \
. . . . .-. \..- ,,

I

0.5
same solution for the simplest configuration treated in the litera-

alb 1.0

Fig. 3. The correction coefficient D versus a/b at different vatues
ture [1], [2], but with a much larger value (in the literature. (,2 =4.75)
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TABLE II

A COMPARISONOFRESULTSUSING DIFFERENTTHEORIESTO

CALCULATETHEEFFECTSOFTHECOMPOSITEHOLE FORSobm

WELL-KNOWN MATERIALS

Naterial

Teflon

Quartz

Water

Pyrex

Nylon

Cavity size (nun)

R

51.55

51.55

51.55

45,8

45.8

‘1

2.337

.432

11,2

‘2

3.188

3.321

.708

12.1

12.7

n

45

45

45

100

100

Calculated s

Omit the effects I Revised by \ Revised

of Hole

2.00

3.61

74.1

4.22

2.88

[1]

[2]

[3]

[4]

[5]

Estin’s

results [11

2,05

4.39

* These values are obtained in a closed cavity by Gregory [4] , Fig. lC.

C =0.21). This difference is in part due to the contribution of

higher order modes (20 percent to 30 percent of the total value)

which were neglected in [1] and [2]. The remaining difference is

due to the assumption of the boundary condition at the interface

z‘ = O. The first-order perturbation theory leads to a II (6) which

will probably be higher than its true value, so our results (13) and

(14) will bean upper approximation of the effects of a composite

hole.

2) When a dielectric tube is used to introduce the material to

be measured (Fig. 1), the effects on the measurement of c“ will be

greatly increased with the increased value of c’ of the measured

material. This situation is of interest on the measurement of

biological samples with a high water content.

These theoretical results have already been used to revise

experimental data, and the calculated values of the complex

dielectric constant of various materials agreed very well with the

corresponding values found in the literature [5]. For a brief

comparison, some experimental results from the authors and

Gregory [4] are treated by both Estin’s simple theory [1] and the

present method (Table II). Obviously, this more precise calcula-

tion is useful for an exact dielectric measurement. In addition, it

must emphasize that wall losses of the metallic tube are not

considered in this paper. At high frequency, these losses might be

an important source of error in dielectric losses measurement.
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Substitution Method for Swept-Frequency

Measurements of Dielectric Properties at Microwave

Frequencies

MARK J. HAGMANN, MSMBER,IEEE, AND O. P. GANDHI,

FELLOW, IEM?

Abstract —A solid-state computer-controlled system ftas been used to

make swept-frequency measurements of the insertion loss and reffeetance

of biological specimens and other media. A substitution procedure was used

for direct comparison of samples to aflow detertnination of small dif-

ferences (on the order of 0.1 dB) in insertion loss and reffeetance.

I. INTRODUCTION

Several investigators claim to have observed sharp and distinct

resonances in the absorption of millimeter waves by a number of

biochemical and biological preparations [ 1]-[5]. Some of the

data suggest that the absorption spectra are significantly different

for normal and malignant tissues, so that such differences might
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