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Short Papers

Composite Hole Conditions on Complex Permittivity
Measurements Using Microwave Cavity Perturbation
Techniques

SHIHE LI, STUDENT MEMBER, IEEE, AND RENATO G. BOSISIO,
MEMBER, TEEE

A bstract —This paper examines the edge effects of introducing a dielec-
tric test cylinder with a test material into a cavity via a metallic support
tube extending outside the cavity. A first-order perturbation theory is used
for this metallic hole containing two different concentric dielectric materi-
als. The Galerkin method is used to determine the amplitudes of numerous
evanescent modes which exist in such composite hole geometries. Compari-
sons are made with the effects produced by a simple hole in which a single
dielectric is postulated inside the metallic support tube. The effects of the
composite hole on the measurement of the dielectric properties of materials
are given.

I. INTRODUCTION

In the field of dielectric measurements by means of the well-
known cavity perturbation method, the effects of the sample
insertion hole are probably the major source of measurement
error. Estin and Bussey had published in 1960 a paper to discuss
the problem of a simple hole in both theoretical and experimental
ways [1]. In recent years, by means of the same procedure—sim-
ple perturbation theory— the effects of a simple hole on measure-
ment of € for both TM,, and TM,, cavities were given by
Meyer [2]. In the above two references only the main cylindrical
TM,, mode in the hole region was taken into account. Further-
more, even for this single mode treatment the amplitude was
chosen rather arbitrarily. In addition, Thomassen [3] also pro-
posed another revised dispersion equation to describe this effect
based on an approximate calculation of end capacitance of a
simple plasma column. These results were checked by Gregory [4]
via a series of measurements for some well-known materials in
different TM,, cavities. From these results one can find that
Thomassen’s equations give a correction factor which is too big.

In this paper, the hole formed by an external metallic support
tube, joined to the cavity, is considered to contain a dielectric test
cylinder for introducing a sample material with varying dielectric
properties as shown in Fig. 1. A large number of higher order
modes are considered in this composite hole condition as com-
pared to the single mode treatment of the simple hole [1], [2]
containing only one dielectric, The results show that higher order
modes in the composite hole converge rather slowly and will
obviously contribute to the frequency perturbation. In addition,
it is shown that the composite hole perturbs the cavity Q factor
and a correction term for dielectric losses is also derived with the
same theory. All these effects lead to the fact that measured ¢’
and €” are always found to be respectively smaller and higher
than the value measured with no hole of the sample material. By
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Fig 1. Configuration of TM,,, cavity with a concentric dielectric sample

and its composite insertion hole conditions,

the use of the correction terms developed for the composite hole
condition, the calculated error of the dielectric constant measure-
ment is greatly reduced and much more accurate results can be
obtained [5].

II. THE F1ELD DISTRIBUTION IN THE COMPOSITE HOLE
REGION

As shown in Fig. 1, we assume the lengths of dielectric sample,
dielectric tube (to introduce the sample), and the metallic support
tube (made with an ideal conductor) are infinite. This assumption
is always satisfied when the tube’s inner diameter is much smaller
than the resonant wavelength in the dielectric, or when the
following equation is satisfied:

P <1 €))]
where

p  the radial index of the TM,,,, mode;

b  the tube’s inner radius normalized by the radius of the
cavity; and

€’ the real part of the largest of the two diclectric constants:
test tube and sample material.

Under this assumption and considering the symmetry of config-
uration, only cylindrical TM,, modes can exist in the sample
insertion tube; all these modes evanesce rapidly. The fields in the
sample are given by (0<r=a)

o0

E:I = 2 TnAnJO(krnr)eianl (21)
n=1
x ’
Erl = 2 TnAnJI(krnr)e_knz (22)

n=1
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and

o0
Hy = joegeb 3 A,J,(k,,r)e "

n=1

(2.3)

where k7, — k2= ¢ k2, k, is the free-space wavenumber.
Because the attenuation constant ,, is always much larger than
€,k3, we can approximately take
r
krn = k’l = Zn

with an error less than 1 percent when (1) is satisfied. By the
same way, the fields in the dielectric tube are (a <r<b)

e o]
E, = Y 1,B,Z(k,r)e k" (3.1)
n=1
o0
= Y 1,B,Z,(k,r)e " (3.2)
n=1
o0
Hyy = jwege,b D B, Z(k,r)e " (3.3)
n=1
where
Zm(knr):Jm(knr)Y()(knb)_hYm(knr)JO(knb)
and

for upper hole

= { z—h,
for bottom hole -

-z,
According to the boundary condition at r = g, we can obtain the
following relationship:

B = JO(kna)
" Zy(kya)

and
«i(k,a)Zy(k,a) = e20o(k,a) Z,(k,a)=0. (4)

From the characteristic equation (4), the mode series in the small
sample test tube can be obtained. Fro the case ¢, =¢,, we have

kn=Xo./b )

where x,, is the nth root of Jy(x)=0. This is the solution for the
simplest configuration [1], [2].

Another problem is to find the amplitude spectrum 4, inside
the tube. Because of the test tube perturbation, the RF field’s
distribution in the vicinity of interface z'=0 is destroyed and an
E, component appears. As an approximation, we assume that the
H, component distribution in the cavity isn’t perturbed by the
hole. This leads

(6)

H ¢ tube - H¢ unperturbed cavity

atz’=0and r<b.
Substituting (2) and (3) into the above equation, and taking (1)
into account, one can obtain

E;A Ji(r, r/b)—ﬁ, 0<r<a (7.1)
and
o0 F et Y g2
3 AR 7 oy |14 LD }
asr<b (72)
where 7, = k, b, and the small arguments of Bessel function have

been used as an approximation.

TABLEI
AMPLITUDES 4, OF THE FIrsT 20 MODES (TM,;, THROUGH T™g0)
FOR CoMPOSITE HOLE (¢, =4.75, a /b=0.7)

N e=1 €=3 €=475 e=9 €=27 =81
1 0.785 0.691 0.666 0.670 0.816 1.211
2 —0461 —-0272 —0.193 -0.105 —0015 0.022
3 0.185 0.126 0.098 0.066 0.025 0.002
4 —0056 —0.065 —0.062 -—0.056 —0.041 —0.027
5 0.062 0.049 0.043 0.038 0.031 0.027
6 —0.068 —0.040 —0.033 —0029 —0024 —0022
i 0.062 0.0}4 0.026 0.019 0.009 0.003
8 —0087 -0036 —0.021 —0.008 0.008 0.015
9 0.058 0.029 0.017 0.007 —0.007 —0.013

10 0.004 —0.016 —0.015 —0.013 -0.007 0.003

It -0.015 0.010 0.013 0.016 0.017 0.016

12 —0013 -0013 —0011 —0013 —0.014 —0014

13 0.043 0.016 0.010 0.009 0.008 0.009

14 —0.055 —0.019 —0.009 —0.004 0.001 0.003

15 0.046 0.018 0.008 0.001 —0.007 —0.010

16 —0.002 —0.011 —0.007 -—0.005 0.002 0.007

17 —0.029 0.004 0.007 0.010 0.007 0.003

18 0.018 —0.005 —0.006 —0.010 —0.010 —0.010

19 0.022 0.010 0.006 0.007 0.007 0.008

20 —0.050 —0014 -0.005 —0.003 —0.001 —0.001

It is obvious that the distribution of mode amplitudes in the
metallic support tube does not depend on the resonant mode in
the cavity and the radius of the tube b when (1) is satisfied and
the first-order perturbation theory is used. To solve the above
boundary problem, the Galerkin method [6] is useful. By taking
N modes in the tube to match this tangential magnetic field at N
uniformly distributed points, (7) then becomes a linear equation
of order N. As an example, some typical solutions of A, are listed
in Table I, when a pyrex sampling tube (e, =4.75) is used to
introduce a dielectric sample and N equals 40. When N >20, the
amplitudes of the lowet order modes, which are mainly contribut-
ing to storage and loss of RF energy, are effected only a little.
From the results listed in Table I, one can find that the higher the
€, value, the faster the higher modes converge in the composed
test tube case, and stronger effects on the ¢’ measurement wiil
appear. When €, = ¢,, in the case of a single dielectric cylinder,
the distribution of A, will not depend on ¢, and this conclusion
can be obtained from (5) directly.

ITI. THE EFFECTS ON PRECISE MEASUREMENT OF ¢*

According to the adiabatic invariance theorem, the resonant
frequency pulling due to a perturbation by the sample insertion
tube will be equal to the variation of stored energy in the cavity.
By use of the same procedure suggested by Estin and Bussey [1],
and taking the results listed in Table I, this relative resonant
frequency pulling for a T™M,, 4 cavity resonance is given by

(E[

) _ a’bx§, K
folpa 28,013 (x0,)(x3, + ¢?n?/h?)

®

where

o0
K= 2 7,4.J3(r,a/b)

n=1

{ €2b2212('rn) (1']12(7 a/b) ]} (9)

e 62){1 €,J3(1,a/b)

a’Zi(r,a/b)
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and

1 for g =0 1.5
= ’ 1
A { 1/2, for g#0. (10)

On the other hand, the existence of RF fields in the metallic L
support tube will produce an additional loss for lossy dielectric
samples. It is found that

1 f e/EL,. dv 1
8(_): tubes L 1.0l

"ng2
f € Esa_mple dv

b oo
= > T, AL

JE_ bl
AqhQS n=1

JOZ aTnJO

1+

) (11) i

where all arguments of Bessel function J, and J, are 7,4 /b, and
1/Q, is the loss of sample in the cavity. It is obvious that the
measured variation in losses in cavity 8(1/Q;) will not be equal 3
to 1/Q, (the dielectric loss of the sample).

In addition to the effects of cavity wall and external circuits
(via coupling elements) already given [5], the sample loss (1/Q,) -
can be related to the loaded Q factor of cavity (Q;) perturbed by L
tube only as follows:

4] - 1 1 1 1 PO S " L

1 bD 1 0 0.5 a/b 1.0
—=[1-2=s| = (12) . , ,
Q. Aqh or Fig. 2. The correction coefficient C versus a /b at different values of ¢f for
€, =4.75.

where

]
D= 2 TnAﬁ‘/Oz(Tna/b)

n=1

I+

J¥(r,a/b)  bI(ra/b) }
J&(r,a/b)  andy(ra/b) |

By use of the simple perturbation theory, it is easily shown that

8(e'—1) _ bC |
¢—1 Ak (13)

q D

8¢’ bD i
¢’ - Ak (14) ! '

q H \

where | ; '

o= Kle)=k(), (19)

K(¢;) and K(1) are the values of K when ¢,=¢, and ¢, =1,
respectively.

It must be noted that only the effects of one composite hole
(upper or lower hole) is taken into account in the above calcula-
tion. The total effect in actual practice will be double the values 0.5
indicated by (13) and (14).

IV. RESULTS AND DISCUSSION

Numerical results of coefficients €' and D in (13) and (14) are
shown in Fig. 2 and Fig. 3, respectively. A discussion for the
present theory can be made as follows. -

1) The correction coefficient C (Fig. 2) will converge to one
point C =0.323 for any value of €] when a /b =1. This is also the
iﬁiﬂe[sl(;lu[t;in éﬁlt' til]i}sllrzpﬁitcio?ggglgat\t:llzlére(?;e(iﬁg ;ﬁzrl;tirraf‘: Fig. 3. The correction coefficie;ii 4\4,%?15 a/b at different values of €]

L - L L
0 { L L 5 i
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TABLE II
A COMPARISON OF RESULTS USING DIFFERENT THEORIES TO
CALCULATE THE EFFECTS OF THE COMPOSITE HOLE FOR SOME
WELL-KNOWN MATERIALS

Cavity size (mm) Calculated ¢

Material T

R Rl R2 H Omit the effects : Revised by | Revised Reference

of Hole Estin's by present | Value
results [.1] | theory
Teflon 51.55 - 3.188 | 45 2.00 2.05 2.09 2,10 ”
Quartz 51.55 | 2.337 3.321 45 3.61 - 3.80 3.78 )
e 8)

Water 51.55| .432 .708 | 45 74.1 - 77.4 76-78
Pyrex 45,8 - 12.7 100 4.22 4,39 4.49 4.65%
Nylon 45.8 |11.2 12.7 100 2.88 - 3.02 3.02%

* These values are obtained in a closed cavity by Gregory [ﬂ , Fig. lc.

C=0.21). This difference is in part due to the contribution of
higher order modes (20 percent to 30 percent of the total value)
which were neglected in [1] and [2]. The remaining difference is
due to the assumption of the boundary condition at the interface
z’=0. The first-order perturbation theory leads to a H (6) which
will probably be higher than its true value, so our results (13) and
(14) will be an upper approximation of the effects of a composite
hole.

2) When a dielectric tube is used to introduce the material to
be measured (Fig. 1), the effects on the measurement of €* will be
greatly increased with the increased value of €’ of the measured
material. This situation is of interest on the measurement of
biological samples with a high water content.

These theoretical results have already been used to revise
experimental data, and the calculated values of the complex
dielectric constant of various materials agreed very well with the
corresponding values found in the literature [5]. For a brief
comparison, some experimental results from the authors and
Gregory [4] are treated by both Estin’s simple theory [1] and the
present method (Table II). Obviously, this more precise calcula-
tion is useful for an exact dielectric measurement. In addition, it
must emphasize that wall losses of the metallic tube are not
considered in this paper. At high frequency, these losses might be
an important source of error in dielectric losses measurement.
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Substitution Method for Swept-Frequency
Measurements of Dielectric Properties at Microwave
Frequencies

MARK J. HAGMANN, MEMBER, IEEE, AND O. P. GANDHI,
FELLOW, IEEE

Abstract — A solid-state computer-controlled system has been used to
make swept-frequency measurements of the insertion loss and reflectance
of biological specimens and other media. A substitution procedure was used
for direct comparison of samples to allow determination of small dif-
ferences (on the order of 0.1 dB) in insertion loss and reflectance.

I. INTRODUCTION

Several investigators claim to have observed sharp and distinct
resonances in the absorption of millimeter waves by a number of
biochemicals and biological preparations [1]-[5]. Some of the
data suggest that the absorption spectra are significantly different
for normal and malignant tissues, so that such differences might
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